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Kinematics of Edge Dislocations. II. Orowan-Type 
Kinematic Relations 

A. T r z ~ s o w s k i  I 
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The kinematics of edge dislocations based on the model of dislocation lines 
located in a time-dependent equidistant Riemannian material space is considered. 
The distinguished material flows, called dislocation flows, are introduced in order 
to make a comparison between the dislocation kinematics and the macroplasticity 
kinematics. It is shown that the Riemannian generalization of kinematic 
assumptions of the perfect plasticity theory leads to Orowan-type formulas for 
the glide as well as for the double cross-slip types of the edge dislocation 
kinematics. The influence of driving stress of moving dislocations on the shear 
rate is discussed. 

1. I N T R O D U C T I O N  

There are various elementary acts of plasticity due to the dislocation 
motion. Their recognition is essentially the subject of the physical theory of  
plasticity (microplasticity) (Trz,sowski, 1998, Section 1). The mesoplastic 
approach (Trz~sowski, 1998, Section 1), the subject of this paper, is based 
on the application of microplasticity concepts on a mesoscale level, where 
the concept of a continuized crystal (e.g., KrOner, 1986; Trz~sowski, 1993) 
is still applicable. Thus, let us start with a list of some dislocation mechanisms 
leading to the occurrence of plastic deformations. 

It is known (e.g., Hull and Bacon, 1984) that the glide motion of a 
dislocation, in which it moves in the surface containing its line and Burgers 
vector, is an elementary act of plasticity. The glide motion of many disloca- 
tions results in slip, which is the most common manifestation of  plastic 
deformation in crystalline solids. It can be envisaged as (local) sliding or 
successive displacements of one plane of atoms over another on the so-called 
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(local) slip planes. Consequently, a dislocation line can be considered, in the 
continuous description, as the one defining a boundary between slipped and 
unslipped parts of the crystal (Hull and Bacon, 1984). Moreover, globally 
(i.e., on the macroscale) the occurrence of slip surfaces is observed, because 
the appearance of dislocation lines generates a bend in originally straight 
lattice lines. For example, in the case of the so-called single glide (in which 
the crystal deforms by slip on one set of parallel crystal planes only) lattice 
lines originally normal to the plane of slip form a normal congruence, i.e., 
the curves of the congruence are orthogonal trajectories of  a family of (virtual) 
slip surfaces (Bilby et al., 1958). The slip surfaces are called then also (single) 
glide surfaces. 

Another example of surfaces produced by local slips occurs in the case 
of the so-called cross-slip motion (Hull and Bacon, 1984). Namely, discrete 
blocks of a crystal between two slip planes remain undistorted, and further 
deformation occurs either by more movement on existing slip planes or by 
formation of new slip planes. In this last case plastic deformation may occur 
in the form of slip bands. Each band is made up of a large number of slip 
steps on closely spaced slip planes. In this case moving dislocations do not 
lie on the same glide plane, but on a set of  parallel glide planes, and they 
switch from one glide plane to another. This process is called cross-slip. For 
example, in the case of double cross-slip, the Burgers vector is parallel to a 
slip plane, but the dislocation line is bent in such a way that one part lies 
on the slip plane and the other on the plane parallel to it. The cross-slip 
produces a nonplanar slip surface. 

It is shown in this paper that a model of  the kinematics of edge disloca- 
tions (Section 3) based on the geometric theory of a continuous distribution 
of dislocations (Section 2) enables us to distinguish, in terms of  an intrinsic rate 
of stretchings tensor (Section 3), the elementary act of  plasticity of single glide 
character from that of double cross-slip character (Section 4). The Orowan- 
type kinematic relations (Trz~sowski, 1998, Section 1) corresponding to these 
elementary acts of plasticity are derived (Section 4), and the influence of driving 
stress of moving dislocations on the shear rate is discussed (Section 5). 

2. GLIDE SURFACES 

Let ~(t) = (Ea (', t); a = 1, 2, 3) and ~*(t)  = (Ea( ., t)), t E I C R+ 
denote the (time-dependent) Bravais moving frame and the Bravais moving 
coframe dual to it, respectively (Trz~sowski, 1998): 

Ea = eaOa, Ea ~-- ~A d XA 

(E a, Eb) = ~a eA = ~ ,  [E a] = c m ,  [Ea] = c m  - t  (2.1) 
b 
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where a dimensional Lagrange coordinate system X = (xA'~ A = 1, 2, 3), 
[X A] = cm, is considered. The intrinsic metric tensor g defined by �9 has 
the form 

g(X, t) = 8abEa(X, t) | Eb(x ,  t) = gas(X, t) dX  a ~ d X  B 

gan(X, t) = ~A (X, t) b n (X, t)~ab, [g] = cm 2 (2.2) 

and defines a time-dependent material Riemannian space ~g = (~,  g), where 
denotes the body identified with an open, simply connected subset of 

the Euclidean point space E 3 (the configurational space of the body). The 
instantaneous material  space will be denoted by 9~t = (~,  gt), where gt(X) 
= g(X, t). The intrinsic metric tensor represents the existence of secondary 
point defects created by the distribution of dislocations (defined by ~ )  in a 
way consistent with the property that dislocations have no influence on local 
metric properties of a crystal structure (Trz~sowski, 1998). The influence of 
these secondary point defects on the dislocation kinematics will be modeled 
by treating dislocation lines (see Section 1 and Trz~sowski, 1998) as those 
located in the material Riemannian space ~g (Trz~sowski, 1998). 

Let us assume the existence of a convective Lagrange coordinate sys tem 
X = (X A) = (X ~, X 3) on ~ (Trz~sowski, 1998): 

X A = XA(~, t), • 0) = 8a~a (2.3) 

where ~ = (~a) denotes a reference Lagrange coordinate system, such that 
the time-dependent intrinsic metric tensor takes the following form in 
these coordinates: 

g(X, t) = g t ( X )  --" attt(X3)at(X~) + dX 3 ~ dX 3 ( 2 . 4 )  

where a t is the metric tensor (depending on t E I as a parameter) of a 
general two-dimensional Riemannian space, and Wt, t E L is a positive non- 
dimensional scalar, say of the form 

~,(X 3) = a(t )  2 exp[-2Kt(X3)], ~,(0) = 1 (2.5) 

It is the canonical form of a metric tensor of the so-called equidistant Riem-  
mannian space ~ g  (Trz~sowski, 1998). Moreover, in this case, there exists 
a distinguished g-unit vector field n such that (in the convective coordinates) 

n = naOa, n a -- ~a (2.6) 

and the curves in 28g tangent to n form a geodesic congruence of curves 
orthogonal to the coordinate surfaces (of the convective coordinate system) 
defined, at least locally, as 

Ec = {P e U: X3(p) = c} (2.7) 
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where c ~ R, [c] = cm, are constants and U C ~g is a coordinate neighborhood 
(Trz,  sowski, 1998). The convective Lagrange coordinate system defines 
actual (Lagrange) coordinates on ~g. The intrinsic metric tensor (2.4) corres- 
ponds, e.g., to a Bravais moving frame defined in actual coordinates by 
(Trz~sowski, 1998) 

E~(X, t) - xItTll2(X3)ea(XK, t) (2.8a) 

E3(X, t) -- 03, or, K = 1, 2 (2.8b) 

and the following time-dependent coordinate transformation: 

X '~ = X~(~ ~, t), X'~(~ ~, 0) = ~ 

X 3 = ~3, or, K = 1, 2 (2.9) 

defines a convective Lagrange coordinate system in which the Bravais moving 
frame has the form (2.8) in the actual coordinates X = (X A) as well as in 
the reference coordinate system ~ = (~a). 

The coordinate surfaces (2.7) are slices of maximal integral manifolds 
of  a two-dimensional involutive distribution of local slip planes containing 
base vectors Ea, at = 1, 2, of the form (2.8a) everywhere (Trz~sowski, 1998). 
Namely, the lines in ~g defined by the condition 

/3 = ! �9 E3 = 0 (2.10) 

where ! is the unit tangent to the line and u �9 v = ugv are edge dislocation 
lines for the distribution of dislocations defined by (2.8), and their local 
Burgers vectors b are given by 

b = bgm, b3 = b .  E 3 = 0 

mama = 1, m �9 l = 0 (2.11) 

and 

pbg = �89 I~[/xlttl = IK[I 

bg = Ilbllg = (baba) ''2 (2.12) 

where f '  = 03f, and p > 0 is the (volume) scalar density of  dislocations. 
Thus, we can define a local glide system (!, m, n) such that the above- 
mentioned maximal integral manifolds are (virtual) glide surfaces for edge 
dislocation lines described by this glide system (Trz~sowski, 1998). These 
glide surfaces and their slices (2.7) will be denoted by ~c. For each t e L 
Xc c ~ t  and the first fundamental form ac,t induced on Xc from ~ t  has, 
according to (2.4), the following form: 

ac, t(X K) = Wt(c)at(X ~) = a[c, t]~a(X ~) dX ~ | dXa (2.13) 
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where [see (2.8a)] 

a,(X K) = ~f~e~(X ~, t) | ef~(X ~, t) = a~a(X ~, t) dX ~ | dX ~ (2.14a) 

a[c, t]~a(X ~) = ~t(c)a~a(X ~, t), qtt(0) = 1 (2.14b) 

The submanifolds ~c.t = (Ec,ac,t) of ~ t  are time-dependent umbilical surfaces 
with the mean curvature Ht(c) given by (Trz~sowski, 1998) 

nt(c) = 2K;(C) 

K; = t~3K t, [Ht(c)] = cm -1 (2.15) 

where the scalar Kt is that of (2.5). Consequently, it follows from (2.12) and 
(2.15) that, for the distribution of dislocations defined by (2.8), the formula 

pbglrZ~.t = �89 IHt(c)l (2.16) 

describing the influence of edge dislocations on the mean curvature of glide 
surfaces is valid (Trz~sowski, 1998). Note that, according to (2.16), the 
modulus bg of the local Burgers vector of a gliding dislocation line is indepen- 
dent of the choice of this line (Trz~sowski, 1998). 

3. DISLOCATION KINEMATICS 

The partial derivative 0t with respect to the time parameter will be 
designated also (for simplicity) by the dot over letters, e.g. [see (2.1)] 

Ea(X,  t) : Ot r  t)t9 A (3.1) 

and for the volume 3-form V of the Riemannian material space ~g ,  we have 
[see Trz~sowski, 1998, Section 1, and (2.7) and (2.28)] 

v =  rv  

= k/e, ~ = 0re, F = In e 

a 
e = g l/z, e -- det(ea), g = det(gaB) (3.2) 

If (Ca; a = 1, 2, 3) is a Cartesian base on the ambient Euclidean point space 
E 3 of the body, then the tensor field P = P (', t) defined by 

Ea(X, t) = P(X, OCa 

C a l E b  = ~ab, Ea(X, t)g(X, t)Eb(X, t) = ~b (3.3) 

where 8 denotes the Euclidean metric on the point space E 3, is called a 
plastic distortion (of the body). It follows from (3.3) that 

Ea = SpEa, Sp = [~P-' (3.4) 
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and 

g = -2Dp (3.5a) 

D. = �89 (L. + Lpr), L .  = gS. (3.5b) 

From (3.2) and (3.5) we obtain 

trDp = 3plJ, = - f ' ,  Jp = det P = g- , /z  (3.6) 

Therefore, the symmetric tensor field Dp defines the rate of the change of 
intrinsic metric properties of the continuized dislocated Bravais crystal and 
its trace is a measure of the rate of plastic distortion of the Euclidean volume 
of the body. 

Let us consider a materialf low in the form of a smooth mapping • 
• I ---> Gg such that for each t ~ / ,  • (') = • t) is a local diffeomorphism 
Xt: G0 ~ GI. If ~ = (~a) is a coordinate system on G0 and X = (X a) is a 
coordinate system on Gg, then we can define a convective Lagrange coordi- 
nate system X a = • t) on G assuming that for each p ~ Go 

xA(~(p), t) = XA(X(p, t)) (3.7) 

Conversely, a Lagrange convective coordinate system on G defines, according 
to (3.7), a material flow X: Gg • I ---> Gg. For example, the coordinate 
transformation (2.9) defines a material flow preserving the canonical form 
(2.4) of  the intrinsic "equidistant" metric tensor as well as the form (2.8) of 
the Bravais moving frame. The mapping • defines a material velocity field 
v by 

v(X, t) = vt(X), v,  = V,  o X; -~ 

V,(~) = r ~ ( 0  = X(~, 0 (3.8) 

where ~0~ denotes the vector field tangent to the curve q~: I ---> G, and 
the mapping X is identified with its coordinate description (xA). In this 
coordinate description 

u t) "~- vA(x, t)O A 

va(• t), 0 = otxa(~, t), [v A] = cm sec -1 (3.9) 

The mapping X and the velocity field v will be called a dislocation f low and 
a dislocation f low velocity, respectively. We will take only advantage of the 
existence of a dislocation flow velocity defined by (3,9) and a Lagrange 
convective coordinate system. If (!, m, n) is a local glide system (Trz,sowski, 
1998), then the glide component V(m) and the climb component v(n) of  the 
dislocation flow velocity are defined by 
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V(m) = V " m, v(n) = v �9 n (3.10) 

where u �9 v = ugv. For example, if the dislocation flow density is defined 
by (3.9) and 

S ~ = X~ a, t), Xot(~ a, O) = ~ot 

X 3 = ~  3, a = 1 ,2 ,3 ,  o r =  1 ,2  (3.11) 

then 

v(X, t) = vot(X, t)Oot, et = 1, 2 

1)(n ) = 1/3 = 0 (3.12) 

Note that the condition v(n) = 0 may be accepted, e.g., at low temperatures 
(Ghoniem and Amadeo, 1990). The way in which dislocation flows would 
be associated with a deformation process of  the considered material body 
due to its external loading (and, e.g., due to the influence of  a thermal field) 
is beyond the scope of the paper. 

Let us consider, in order to make a comparison between the dislocation 
kinematics and the macroplasticity kinematics, the following intrinsic counter- 
part of the spatial velocity gradient: 

Lg = gVgv = Vgv, 

v = gv  = v A d X  A, 

where 

i.e., LAB = V~vn 

VA = gABV B (3.13) 

Vgv = F A ( V ) @ d X  A 

FA(V) = dva -- v ~ [ g ] ,  to~[gl = F~c[g] d X  c (3.14) 

and V g = (F~c[g]) denotes the Levi-Civita covariant derivative corresponding 
to the intrinsic metric tensor g. If the intr insic  rate o f  s t re tchings  tensor  Dg 

is defined by 

then 

Dg = �89 (Lg + L ~  (3.15) 

trDg = trLg = g ABLAB = d i v g v  

where divg denotes the divergence operator defined by V#: 

divgv = Vgv a = g -l /20a(g 1/2vA) 

(3.16) 

(3.17) 
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and g is defined in (3.2). The pullback g by • defines an intrinsic counterpart 
G of the right Cauchy-Green tensor: 

G = x*g = ~ab Ga ~ Gb = Gab d~ a ~ d~ b 

Gab ",4 8 = I~Bd~,.d :- XAaXggAB o X 

c ~ = x * ~  = 8g d~ b, 8 g  = ~a x~ ,  Xa A = a.X a 

where (2.1)-(2.3) and (3.7) were taken into account. The intrinsic plastic 
strain tensor Ep is given then by 

(3.19) Ep = / (G - go) 

Taking into account that (Marsden and Hughes, 1978) 

Dg = �89 Lvg 

G = x*(~evg), ~ev = a, + L~ 

where Lv denotes the Lie derivative operator, we obtain 

E,, = �89 G = x*(Dg - Dp) 

(3.20) 

(3.21) 

where Dp denotes the rate of plastic stretchings tensor defined by (3.4) and 
(3.5b). It follows from (3.5a), (3.6), (3.16), and (3.21) that 

x*Dg = �89 (G - g) (3.22) 

and 

divgv = 3plJp iff trDg = trDp (3.23) 

The relation (3.23) characterizes the case when the existence of a diver- 
genceless dislocation flow velocity, i.e., the condition 

trDg = 0 (3.24) 

is equivalent to the preservation of the body material volume in a rate- 
sensitive plastic regime. It is an intrinsic counterpart of the incompressibility 
condition in the theory of perfectly plastic materials. 

If the material Riemannian space ~g is equidistant and the intrinsic 
metric tensor g takes, in a convective Lagrange coordinate system defined 
by (3.11), its canonical form (2.4) and (2.5), then the components LAB defined 
by (3.9) and (3.11)-(3.14) take the following form: 

LB3 = Vw = 0 (3.25a) 

L3a = V~va = 03va 4_ K~v~ (3.25b) 
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Lf~, = V~v~, = Oav~ - F~[a]vK = ~,V~V,~ (3.25c) 

where V a = (F~a[a]) denotes the Levi-Civita covariant derivative correspond- 
ing to the metric tensor a(X K, t) = at(X K) of a general (time-dependent) 2- 
dimensional Riemannian space [see (2.4)], the form of the Christoffel symbols 
FCn[g] in actual coordinates of (2.4) was taken into account [Trz~sowski, 
1998, (4.11)], and we denoted 

v~ = g ~ v  ~ = ~tv~,  ~ = a ~ v  f~ (3.26) 

So, according to (3.15), 

033 = 0 (3.27a) 

D3~ = �89 (03v~ + K~V~) = Dcd (3.27b) 

D ~  = ~ d , ~ ,  d,~ = 1 (V~,~ + v a ~ )  (3.27c) 

It follows from (2.15) and (3.27b) that 

2D3~ = OaV~ + �89 Ht(X3)v~ (3.28) 

Equations (3.12) and (3.27c) suggest we consider the dislocation flow 
velocity as a field defining infinitesimal deformations ~ of surfaces Ec., = 
(~c,ac,,), where ac,t is given by (2.13), that is (Hineva, 1984), 

I I = w + lqn, w = tav, [w] = [1], [-q] = cm, [td] = sec 
(3.29) 

where ta is a constant, ~q is a scalar, and n = E3 is the g-unit normal to 
the surface. For example, I I is an infinitesimal conformal deformation if 
(Hineva, 1984) 

tdDaf~ = ta~,(c)d~f~ = xlb[c, t]~a + ha[c, t]~f~ (3.30) 

where h, [h] = [1], is a scalar, and b[c,  t]~,a are components of the second 
fundamental form b~,t of the umbilical surface ]~,t with the first fundamental 
form ac, t. Since for umbilical surfaces (Trz~sowski, 1998) 

bc.t = 1H,(c)a~,t  (3.31) 

the condition (3.30) takes the form [see (2.13) and (2.14b)] 

tad~,f~ = [�89 Ht(c)~q + h]a~f~ (3.32) 

Moreover, since in a coordinate system of (2.4), we have (Trz~sowski, 1998) 

F~a[g] = F~a[a], F33[g] = 0 (3.33) 
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we obtain, taking into account (2.4), (2.13), (2.14b), (3.12), (3.16), and 
(3.17), that 

divgvlx3=0 = divaV 0 

v0 = v~x3=o = v ~ ( X  K, O, t)O~ 

trDg = gABDAB = a~f~d~a (3.34) 

It follows from (3.16), (3.30), (3.32), and (3.34) that along the surface ~0,, 
= (X0,at) C ~ t ,  the equation 

V~u~ + V~u~ = (divau)a~, u = tdVo = u ~ ( X  K, t)cg~ (3.35) 

stating that the vector field u tangent to X0,t defines, at each instant t e L 
an infinitesimal conformal transformation of Xo,t, holds. If the condition 
(3.24) is fulfilled, then (3.35) reduces to the definition of u as a Killing 
vector field for the metric at: 

Vaul3 + V~u~ = 0 (3.36) 

It is known (Eisenhart, 1964) that the two-dimensional manifold Xo,/= (E0, 
at) has a constant scalar curvature Ka(t) iff the isometry group G of the 
manifold has its maximal order 3. In this case the metric tensor at is reduc- 
ible to 

at = a~f~ d ~  | d x  f3 

a ~  = [1 + Ka(t)r214]-2~f3,  r 2 = ~ x ~ x  f3 (3.37) 

and generators of the group G are given by (Ikeda and Nishino, 1973) 

u a : UaetOct , Oct = alOx ~, et = 1, 2, a = 1, 2, 3 

u '~ = [1 - Ka(t)r2/4]~~ + ~Ka(t)x~'xK 

U l = X z, U 2 = --X l, XK = 8~o~, Or, K = 1, 2 (3.38) 
3 3 

Thus, the group G is locally isomorphic to SO(3) [Ka(t) >0], S 0 ( 2 ,  1) [Ka 
(t) < 0], or E(2) [Ka (t) = 0], which denote the 3-dimensional rotation group, 
the 3-dimensional Lorentz group, and the 2-dimensional Euclidean group, 
respectively (Ikeda and Nishino, 1973). 

Let us consider a Bravais moving frame with the intrinsic metric tensor 
g defined, in a convective Lagrange coordinate system of the form (3.11), 
by the conditions (2.4) and (2.5). If the Bravais moving frame admits the 
existence of a local glide system (!, m, n) such that n is the unit normal to 
the surfaces Ec,t = (Ec, ac,t) [see (2.6) and (2.7)], then the surfaces E0,t can 
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be considered as umbilical glide surfaces of a constant mean curvature Ho(t) 
being virtual surfaces of the glide motion of edge dislocation lines defined 
by the local glide system. The Killing vector fields for the metrics at, t ~ I, 
define a class of dislocation flow velocities of the form (3.12) acting on the 
glide surfaces as their infinitesimal motions. In the single glide case (Section 
1) planes originally parallel and normal to a lattice direction pass into glide 
surfaces without local stretchings (Bilby et al., 1958). Consequently, such 
glide surfaces, say E0,t surfaces, ought to have vanishing scalar curvature 
[Ka(t) = 0] and ought to be normal to a local lattice direction, say the 
n = E3 direction. Thus the 2-dimensional Euclidean group E(2) acts transi- 
tively on the single glide surfaces. This means that such a glide surface 
admits as its motion, in the small at least, the deformation of Euclidean 
reference lattice characterizing the influence of the glide motion on this lattice 
(Bilby et al., 1958). For example, if the Bravais moving frame is defined by 
(2.8) and by the condition [E~, EO] = 0, oL, 13 = l, 2 (Trz, sowski, 1998, 
Section 5), then the local glide system (!, m, n) defined by (2.10)-(2.12) 
describes such a physical situation. In this case the material equidistant space 
~g has a constant negative scalar curvature (Trz, sowski, 1998). Note that 
the single glide surfaces embedded in a Euclidean space are called developable 
(Bilby et al., 1958). 

Let ]~0,t be the above defined umbilical glide surface, but of a constant 
negative scalar curvature [Ka(t) < 0]. For example, the Bravais moving frame 
defined by (2.8) admits this case. Since a 3-dimensional particular Lorentz 
transformation can be considered as a deformation of Euclidean plane chang- 
ing a square into a rhomb (Trz~sowski, 1986) (so-called pure shear), this 
case may be interpreted as the one admitting locally the occurrence of a 
deformation process such that after passing through the transformation phase 
locally the crystal lattice regains its original structure, whereas globally one 
has a defect. This deformation results in macroscopic plastic deformation of 
a crystal (Rogula, 1975). The remaining 3-dimensional Lorentz transforma- 
tions can be identified with 2-dimensional Euclidean rotations (see the simple 
glide case) or their composition with pure sheafing. 

The considered glide surfaces of a constant scalar curvature Ka(t ) are 
generalizations of a plane or sphere in a Euclidean 3-space. If Ka(t) <-- O, 
then the surface can be locally considered as a plane [Ka(t) = O--parabolic, 
i.e., locally Euclidean glide surfaces] or as a half-plane [Ko(t) < O---hyperbolic 
glide surfaces]. The class of elliptic glide surfaces [K~(t) > 0] contains 
surfaces topologically (and even isometrically) equivalent to a Euclidean 2- 
sphere. In such a case we may expect that one part of the crystal is displaced 
(at least locally) by the action of 3-dimensional Euclidean rotations. It occurs 
in an elementary act of plasticity connected with the phenomenon of crystal 
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fragmentation in the plastic yielding process and is called rotationalplasticity 
(Panin et al., 1985). 

4. OROWAN-TYPE FORMULAS 

Let (!, m, n) be a local glide system defining a foliation of the material 
Riemannian space 28g by glide surfaces normal to the n direction (Trzcsowski, 
1998). Let v be a dislocation flow velocity with the vanishing climb compo- 
nent [i.e., v(n) = 0 in (3.10)] and Dg the corresponding intrinsic rate of 
stretchings tensor defined by (3.13)-(3.15). The tensor field Dg is assumed 
to be constrained by the following counterparts of kinematic conditions 
considered in the theory of perfect plasticity (Gambin and Rychlewski, 1991): 
the "incompressibility" condition (3.24) and the condition of the existence 
of a family of instantaneously inextensible planes. The last condition can be 
formulated (in our notation) as follows: if u is a vector field such that 

U(n)  = u .  n = 0, 

where u �9 v = ugv, then 

i.e., u = u(ol + U(m)m (4.1) 

uDsu = 0 (4.2) 

The tensor field D s 
following representation: 

has then, with respect to the local glide system, the 

Dg = gDg r (4.3a) 

(4.3b) D = ~ ( K |  + n |  

where 

K = m + Bol = Kgk, k . k =  1, k . n = 0  

Kg = IIKIIg = (1 + 82) 1/2, Bo = Dtn/Dmn 

Din = IDn, Dmn = mDn = ~//2 (4.4) 

and ~/denotes the rate of the (inelastic) shear in the k direction due to the 
dislocation flow. If 

n = 0 3  

K = K'~O,, K,~ = g,~13K ~, c~, 13 = 1, 2 (4.5) 

where X = (X A) = (X", X 3) is a Lagrange coordinate system on ~g,  then 
it follows from (4.3)-(4.5) that the components D3a of Dg take the form 
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"9 
O3a = 2 ga, ga = me + 8ol~ = Kgk~ (4.6) 

The pair (k, n) defines a local slip system with a resulting slip in the k 
direction caused by a glide motion of edge dislocation lines (being lines of 
the vector field 1) with the slip direction m and by an additional slip in the 
1 direction tangent to these lines. 

If the material Riemannian space is equidistant and the canonical form 
(2.4) and (2.5) of its metric tensor g is attained in actual coordinates defined 
by (3.11), then it follows from (3.28) and (4.6) that the resulting slip direction 
covers the dislocation flow velocity direction, that is, 

V ---- vgk,  Vg > 0 (4.7) 

if 

Then 

03v~ = 0  (4.8) 

(4.9a) Vg = 2Kg H, 

sgn ~/ = sgn lit (4.9b) 

and, according to (4.8), the actual coordinates can be taken in the form (2.9). 
Consequently, if the distribution of dislocations is defined by (2.8), the glide 
system is defined by (2.10) and (2.11), and 

> 0 (4.10) 

then we obtain, according to (2.16) and (4.9), the following generalization 
of the Orowan relation (Trz~sowski, 1998, Section 1): 

~1 = Kg'pbgvg (4.11) 

where bg is the modulus of the local Burgers vector b defined by (2.11). 
Since Kg = 1 iff local slips are caused by a glide motion only 

k = m (4.12) 

the scalar Kg of (4.11) is a directional coefficient (Perzyna, 1978). In the case 
(4.12), equation (4.11) reduces to the well-known form of the Orowan relation: 

"~ = pbgvg (4.13) 

The tensor D defined by (4.3b) takes then the form 

D = ~/M, M = �89 (m | n + n | m) (4.14) 
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If, for the same local glide system, a double cross-slip (Section 1) in 
the m direction is considered, then 03 v~ ~ 0 and, according to (3.28) and 
(4.6), we have 

Kg~lk~ = 03v~ + �89 (4.15) 

If additionally 

K(X, t) = Kg(X 3, t)k(X K, t) (4.16) 

and the conditions (4.7) and (4.10) are fulfilled, then we obtain the following 
extension of the generalized Orowan relation (4.11): 

~1 = Kg~(pbgvg + OnVg) (4.17) 

where (2.6) and (2.16) were taken into account. Kg = 1 means then that local 
slips are caused by a double cross-slip process only: 

~1 = pbgvg + O,vg (4.18) 

We conclude that the equidistant property of the Riemannian material space 
~g is consistent with the glide motion of dislocations as well as with the 
double cross-slip process. It is also a property of the material space consistent 
with an ability of dislocations to organize themselves in periodic layers (e.g., 
in the form of slip bands; see Sections 1 and 5). Moreover, it appears that the 
equidistant property of ~g admits the existence of distributions of dislocations 
[defined by (2.8)] and the existence of dislocation flows [defined by (2.9) 
or (3.11)] for which the Orowan-type kinematic formulas are valid. This 
suggests that this particular case of the material geometry is of essential 
physical importance. 

5. FINAL REMARKS 

Let (m, n) denotes the local slip system of the local glide system defined 
by (2.10) and (2.11) and corresponding to the distribution of dislocations 
defined by (2.8). Let us consider a dislocation flow defined by (2.9) with 
the dislocation flow velocity (3.9) parallel to the slip direction m [see (4.7)- 
(4.13)]. The intrinsic rate of stretchings tensor Dg is given then by (4.3a) and 
(4.14). If T is a symmetric stress tensor defined in actual configurations Xt 
(U) C ~ ,  t e L of domains U C ~ ,  then the scalar 

T = TM = mTn (5.1) 

is the so-called resolved shear stress in a local slip plane normal to the n 
direction and containing the slip direction m. There are various dislocation 
dynamic descriptions treating T as a driving stress of moving dislocations. 
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For example, it has been experimentally determined that at low temperatures 
[when the climb is negligible (Ghoniem and Amadeo, 1990); see (3.10) with 
vr = 0] the relationship between the (mean) glide velocity Vg and stresses has 
the form (Ghoniem and Amadeo, 1990; Perzyna 1978; Yang and Lee, 1993) 

Vg = Vo (5.2) 

where v0 is the shear wave velocity, and T is the effective resolved stress. 
To as well as n may be, in general, functions dependent on the temperature 
and permanent strains; in particular cases they may be treated as material 
constants. It is not assumed in this case that a critical value of the stresses 
is needed for the activation of the dislocation motion (and thereby to create 
conditions for the appearance of plastic deformation) (Perzyna, 1978). 

It is considered, in order to introduce the notion of critical stresses, an 
equivalent definition of T providing the alternative physical significance of 
the resolved shear stress (called also then the Schmid resolved shear stress) 
(Yang and Lee, 1993). Namely, since the intrinsic rate of stretchings tensor 
Dg is a measure of the rate of stretchings during the plastic deformation due 
to the glide motion of dislocations (Section 4), the dissipated power per unit 
mass can be introduced by 

W = T .  Dg = T~/ (5.3) 

where T is defined by (5.1) and Dg by (4.3a) and (4.14). It states that the 
resolved shear stress bears the physical significance of the plastic work 
conjugate of shear rate ~/ in the local slip system (m, n). Moreover, the 
condition of nonnegativeness of dissipation should be fulfilled: 

T~/>-- 0 (5.4) 

The Schmid yield criterion refers to cases where the variations of shear rate 
~/only depend on the corresponding shear stress, and states that 

~ / = 0  for O<--T<Tc 

~/-----0 for T>--Tc>O (5.5) 

where Tc is a critical resolved shear stress and the conditions (4.10) and (5.4) 
were taken into account. The slip system in which T reaches a critical value 
T~ is usually termed the critical slip system and provides the so-called yield 
surface in stress space defined by the condition 

mTn = Tc (5.6) 

For the rate-dependent materials in the regime of glide with normal speed 
(i.e., vg < Ca, where Cd is a quantity of the order of the elastic shear wave 
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speed), the shear rate '9 of the Schmid yield criterion is usually characterized 
by the following macroscopic counterpart of the power low (5.2) (Yang and 
Lee, 1993; Batra and Zhu, 1995): 

'9 = 0 for T >-- Tc (5.7) 

for T <  Tc 

where '90 is a characteristic reference strain rate such that if the crystal is 
deformed with '9 = '90 [in our case the deformation is a material flow • ~g 
• I --> ~g and '9 is that of (4.14)], T -- Tc is a critical resolved shear stress 
required to cause a plastic deformation in the (local) slip system (m, n). 

The derived Orowan formula (4.13) is a bridge between micro- and 
macromechanics [i.e. between the relations (5.2) and (5.7)]. A second relation 
between micro- and macromechanics [see (2.16), (4.9b), and (4.10)] 

pbg = -~ n (5.8) 

describes the influence of microscopic quantities p and bg (the scalar density 
of dislocations and the modulus of the local Burgers vector, respectively) on 
the mean curvature H of umbilical slip surfaces [nonplanar due to the influence 
of secondary point defects (Trz~sowski, 1998)]. It follows from (4.13) and 
(5.8) that 

'9 = �89 Hvg (5.9) 

where v 8 is the modulus of the velocity of edge dislocations gliding over a 
slip surface of the mean curvature H. The relation (5.9) concerns a particular 
distribution of dislocations for which their mobility produces a plastic shearing 
due to the existence of secondary point defects created by this distribution 
of dislocations. The dislocation fluid case (Trz~sowski, 1998) provides an 
example for which, in general (Trz~sowski, 1998, Section 5), the relation 
(5.8) is not valid. Note that although the instantaneous slip surfaces ~r C 
~ t  (Section 2) can be locally isometrically embedded in the 3-dimensional 
Euclidean configurational space of the body (Friedman, 1965), the mean 
curvature H is not preserved under this embedding [since H is a relative 
geometric quantity (Trz~sowski, 1998, Section 4, (4.17))]. Consequently, the 
mean curvature H may be treated as a material parameter. For example, it 
follows from (5.2) and (5.9) that the shear rate "9 due to the driving stress 
of moving dislocations has the form resembling that, (5.7), of the Schmid 
yield criterion: 

'9 = '90 , '90 = �89  > 0 (5.10) 
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where (in general) % = % (X 3, t) is a characteristic strain rate; if ~g  is an 
Einstein space [and thus ~g  is conformally flat (Trz~sowski, 1998, Sections 
4 and 5], then % = ~/0 (t). Since (for T ~ 0) ~/ = 0 iff ~/0 = 0, we may 
consider (5.10) as a model of the phenomenon of  localized plastic shearing, 
say on the inside of a layer of the thickness 2h consisting of equidistant glide 
surfaces (see Sections 1 and 2), assuming that 

H(X 3, t) > 0 for IX31 < h 

H(X 3, t) = 0 for IX31 >-- h (5.11) 

Then, the considered mobile dislocation lines are, according to (5.8), absent 
on the outside of  the layer. Assuming that To = Tc is a critical resolved shear 
stress, we can extend (5.10) to the macroscopic formula (5.7) [considered 
on the inside of the layer in the case (5.11)]. 

We conclude that the proposed geometric model of  the edge dislocation 
kinematics has, at least for some particular cases of  distributions of disloca- 
tions admitting the relation (5.8), the Orowan-type mesoplastic character. 
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